Pengaruh Aglomerasi terhadap Produktivitas Tenaga Kerja Industri Pengolahan di Pulau Jawa Tahun 2005, 2010, dan 2015
Abstract
This study aims to estimate the effect of agglomeration on manufacturing labor productivity by considering the presence of spatial dependence for 110 regencies/cities in Java Island in 2005, 2010, 2015, and 2005-2010-2015. Estimations are conducted on cross section data using ordinary least square (OLS) method and spatial econometrics method. The estimation results show nonlinear
relationship between agglomeration and manufacturing labor productivity in the form of inverted U shape curve. An increase in
agglomeration will increase labor productivity, but it will decline after reach the critical point (increasing but diminishing), along with the increase of manufacturing labor density as the measurement of agglomeration. The simulation of critical point value in conditions where an increase in 1 person/ha labor density will only increase productivity by less than (<) Rp1.000/person, shows that North Jakarta City in 2005 has passed this critical point while other regions are still below. Estimating Spatial Model with maximum likelihood estimator has not consistently shown the effect on the relationship between agglomeration effect and manufacturing labor productivity. There were spatial spillover effects between regions in Java Island on 2005 and 2005-2010-2015 in the form of labor productivity spillover from neighbouring regions and spatial dependencies on error. The positive result of output density parameter shows that agglomeration will give positive externality to output per area in Java Island.
Keywords: agglomeration, productivity, labor density, spatial dependence
Abstrak
Penelitian ini bertujuan untuk mengestimasi pengaruh aglomerasi terhadap produktivitas tenaga kerja industri pengolahan dengan
mempertimbangkan adanya dependensi/keterkaitan spasial (spatial dependence) untuk 110 kabupaten/kota di Pulau Jawa pada tahun 2005, 2010, 2015, dan 2005-2010-2015. Estimasi dilakukan pada data cross section dengan menggunakan metode ordinary least square (OLS) dan ekonometrika spasial. Hasil estimasi menunjukkan bahwa terjadi hubungan nonlinier antara produktivitas tenaga kerja industri pengolahan dengan aglomerasi dalam bentuk kurva U terbalik. Peningkatan aglomerasi akan meningkatkan produktivitas tenaga kerja industri pengolahan, namun kenaikan produktivitas tersebut semakin lama akan mengecil (increasing but diminishing) seiring dengan peningkatan kepadatan tenaga kerja industri pengolahan sebagai ukuran dari aglomerasi. Ketika disimulasikan nilai titik kritis aglomerasi pada kondisi di mana kenaikan kepadatan tenaga kerja sebesar 1 orang/ha hanya akan meningkatkan sebesar kurang dari (<) Rp1.000/orang maka dapat diketahui bahwa Kota Jakarta Utara pada tahun 2005 sudah melewati titik kritis, sementara wilayah lainnya masih berada di bawah titik kritis. Penggunaan estimator maximum likelihood dalam mengestimasi Model Spasial belum konsisten menunjukkan pengaruh terhadap hubungan dampak aglomerasi dan produktivitas tenaga kerja industri pengolahan. Terjadi pula efek curahan (spillover) spasial antarkabupaten/kota di Pulau Jawa pada tahun 2005 dan gabungan ketiga tahun (2005-2010-2015) berupa efek curahan (spillover) produktivitas tenaga kerja dari wilayah yang bertetangga serta dependensi/keterkaitan spasial (spatial dependence) pada error. Sementara itu, parameter kepadatan output menunjukkan hasil yang positif sehingga dapat menunjukkan bahwa aglomerasi menyebabkan eksternalitas positif terhadap output per luas wilayah di Pulau Jawa.
Kata kunci: aglomerasi, produktivitas, kepadatan tenaga kerja, dependensi spasial
Keywords
Full Text:
PDFReferences
Buku:
Anselin, L. (2013). Spatial econometrics: Methods and models (Vol. 4). Dordrecht: Springer Science & Business Media.
Fujita, M., Krugman, P., & Venables, A. (1999). The spatial economy: Cities, regions and international trade. Cambridge, MA: MIT Press.
Marshall, A. (1890). Principles of economics. London: Macmillan.
Rahardja, S., Kuncoro, A., Fitriani, F., Varela, G., & Dipo, M.A. (2012). Agglomeration and manufacturing activities in Indonesia. Jakarta: World Bank.
Jurnal:
Andersson, M., & Lööf, H. (2011). Agglomeration and productivity: Evidence from firm-level data. Annals of Regional Science, 46(3), 601-620.
Azari, M., Kim, H., Kim, J.Y., & Ryu, D. (2016). The effect of agglomeration on the productivity of urban manufacturing sectors in a leading emerging economy. Economic Systems, 40(3),
-432.
Badr, K., Rizk, R., & Zaki, C. (2019). Firm productivity and agglomeration economies: evidence from Egyptian data. Applied Economics, 51(51), 5528-5544.
Brülhart, M., & Mathys, N.A. (2008). Sectoral agglomeration economies in a panel of European regions. Regional Science and Urban Economics, 38(4), 348-362.
Ciccone, A., & Hall, R.E. (1996). Productivity and the density of economic activity. The American Economic Review, 86(1), 54-70.
Ciccone, A. (2002). Agglomeration effects in Europe. European Economic Review, 46(2), 213-227.
Elisabet, V.M. (2004). Agglomeration economies and industrial location: City-level evidence?. Journal of Economic Geography, 4(5), 565-582.
Ercole, R., & O’neill, R. (2017). The influence of agglomeration externalities on manufacturing growth within Indonesian locations. Growth and Change, 48(1), 91-126.
Fernandes, M., Santos, S., & Gouveia, A.F. (2017). The empirics of agglomeration economies: The link with productivity. Revue D’économie Industrielle, 123(3), 87-109.
Ke, S. (2010). Agglomeration, productivity, and spatial spillovers across Chinese cities. Annals of Regional Science, 45(1), 157-179.
Khoirunurrofik. (2018). Local economic structure, productivity growth, and industry life cycle: evidence from Indonesia. Asia-Pacific Journal of Regional Science, 2(2), 453-475.
Lee, Y.J., & Zang, H. (1998). Urbanisation and regional productivity in Korean manufacturing. Urban Studies, 35(11), 2085-2099.
Lin, H.L., Li, H.Y., & Yang, C.H. (2011). Agglomeration and productivity: Firm-level evidence from China’s textile industry. China Economic Review, 22(3), 313-329.
Marco-Lajara, B., Claver-Cortés, E., Úbeda-García, M., & del Carmen Zaragoza-Sáez, P. (2016). A dynamic analysis of the agglomeration and performance relationship. Journal of Business Research, 69(5), 1874-1879.
Martínez-Galarraga, J., Paluzie, E., Pons, J., & Tirado-Fabregat, D.A. (2008). Agglomeration and labour productivity in Spain over the long term. Cliometrica, 2(3), 195-212.
Melo, P.C., Graham, D.J., Levinson, D., & Aarabi, S. (2017). Agglomeration, accessibility and productivity: Evidence for large metropolitan areas in the US. Urban Studies, 54(1), 179-195.
Van Oort, F.G. (2007) Spatial and sectoral composition effects of agglomeration economies in The Netherlands. Paper Regional Science, 86(1), 5-30.
Wheeler, C.H. (2003). Evidence on agglomeration economies, diseconomies, and growth. Journal of Applied Econometrics, 18(1), 79-104.
Wibowo, Y.N.A., & Kudo, T. (2019). Agglomeration and urban manufacture labor productivity in Indonesia. Signifikan: Jurnal Ilmu Ekonomi, 8(2), 145-158.
Widodo, W., Salim, R., & Bloch, H. (2015). The effects of agglomeration economies on technical efficiency of manufacturing firms: evidence from Indonesia. Applied Economics, 47(31),
-3275.
Xu, Z. (2009). Productivity and agglomeration economies in Chinese cities. Comparative Economic Studies, 51(3), 284-301.
Tesis:
Indra, F. (2012). Analisis dampak aglomerasi terhadap produktivitas tenaga kerja sektor non-pertanian di Jawa: Sebuah pendekatan ekonometrika spasial. Tesis. Universitas Indonesia, Depok.
Sumber Lain:
Bode, E. (2004). Agglomeration externalities in Germany. Paper dipresentasikan di The 44th European Congress of the European Regional Science Association. Porto: Louvain-la-Neuve.
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Refbacks
- There are currently no refbacks.